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Abstract 

Quantitative structure activity relationships (QSARs) are theoretical models that relate a quantitative measure of 
chemical structure to a physical property or a biological effect. QSAR predictions can be used for chemical risk assess-
ment for protection of human and environmental health, which makes them interesting to regulators, especially in 
the absence of experimental data. For compatibility with regulatory use, QSAR models should be transparent, repro-
ducible and optimized to minimize the number of false negatives. In silico QSAR tools are gaining wide acceptance as 
a faster alternative to otherwise time-consuming clinical and animal testing methods. However, different QSAR tools 
often make conflicting predictions for a given chemical and may also vary in their predictive performance across dif-
ferent chemical datasets. In a regulatory context, conflicting predictions raise interpretation, validation and adequacy 
concerns. To address these concerns, ensemble learning techniques in the machine learning paradigm can be used 
to integrate predictions from multiple tools. By leveraging various underlying QSAR algorithms and training datasets, 
the resulting consensus prediction should yield better overall predictive ability. We present a novel ensemble QSAR 
model using Bayesian classification. The model allows for varying a cut-off parameter that allows for a selection in the 
desirable trade-off between model sensitivity and specificity. The predictive performance of the ensemble model is 
compared with four in silico tools (Toxtree, Lazar, OECD Toolbox, and Danish QSAR) to predict carcinogenicity for a 
dataset of air toxins (332 chemicals) and a subset of the gold carcinogenic potency database (480 chemicals). Leave-
one-out cross validation results show that the ensemble model achieves the best trade-off between sensitivity and 
specificity (accuracy: 83.8 % and 80.4 %, and balanced accuracy: 80.6 % and 80.8 %) and highest inter-rater agreement 
[kappa (κ): 0.63 and 0.62] for both the datasets. The ROC curves demonstrate the utility of the cut-off feature in the 
predictive ability of the ensemble model. This feature provides an additional control to the regulators in grading a 
chemical based on the severity of the toxic endpoint under study.
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Background
Chemical risk assessment associated with chemical expo-
sure is necessary for the protection of human and envi-
ronmental health. Toxicity or adverse effects are major 
reasons for failure of a potential pharmaceutical, an 
industrial chemical or a medical device [1–3]. Regula-
tory risk assessment is the process that ensures market-
ing of safe and effective drugs, medical devices and other 
consumer products. Regulatory decisions are primarily 

dependent on the short and long term toxic and clini-
cal effects of chemicals. Conventional methods of risk 
assessment (in vivo experiments and clinical trials) are 
performed only after product development, and are 
expensive and time-consuming. Although in vivo experi-
mental studies are the most accurate method for identi-
fying the toxic effects induced by a xenobiotic, time and 
cost associated with them for new chemical regulation 
renders them ineffective for regulatory risk assessment.

In silico approaches to predictive toxicology focus 
on building quantitative structure activity relationship 
(QSAR) models that can mimic the results of in  vivo 
studies. In silico methods are appealing because they 
provide a faster alternative to otherwise time-consuming 
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laboratory and clinical testing methods [4, 5]. Currently, 
several commercial (free or proprietary) and open source 
in silico QSAR tools are available that can predict the 
toxic effects of a chemical based on its chemical structure 
[6, 7]. QSAR models are widely used for identification of 
chemicals that have a desired biological effect (e.g. drug 
leads) or for early prediction of potential toxic effects in 
the pharmaceutical industry. In contrast to industrial 
use, regulatory use of QSAR models is very different. In 
a regulatory application, QSAR models can be used to: 
(1) supplement experimental data, (2) support prioritiza-
tion in the absence of experimental data, and (3) replace 
experimental animal testing methods [8, 9].

Several QSAR models have been used and validated 
by United Sates (US) regulatory agencies and are rap-
idly gaining impetus in the European Union (EU) too 
[10–13]. In the EU, the REACH (Registration, Evaluation, 
Authorization and Restriction of Chemicals) initiative 
mandates risk assessment of new and existing chemicals 
[14]. Similar to REACH, the Organization for Economic 
Co-operation and Development (OECD), also has a set 
of internationally agreed upon validation principles for 
regulatory acceptance of QSAR models [15].

In view of the possible uses of QSAR tools, regulators 
often use predictions from multiple QSAR tool for arriv-
ing at a decision. However, different QSAR tools often 
make conflicting predictions for a given chemical and 
also vary in their predictive ability for different classes 
of chemicals. Often, the validation of a particular QSAR 
tool and sufficient confidence that it can be used reliably 
for a given chemical is not available, which makes han-
dling conflicting predictions and determining the best 
prediction difficult [16]. Transparency in predictions is 
crucial in developing safety assessment decisions and 
reports, which makes the use of QSAR tools challenging 
for a regulatory risk assessment. In this manuscript, we 
present a Bayesian ensemble model of QSAR tools with 
improved prediction accuracy and reliability. In the fol-
lowing sections, we discuss the present state-of-the-art, 
describe ensemble methodology, Bayes classification and 
present a comparative analysis of the Bayes ensemble 
model.

Related work
There are studies that investigate methods for combining 
predictions from multiple QSAR tools to gain better pre-
dictive performance for various toxic endpoints: (1) Sev-
eral QSAR models were developed and compared using 
different clustering algorithms (multiple linear regres-
sion, radial basis function neural network and support 
vector machines) to develop hybrid models for biocon-
centration factor (BCF) prediction [17]; (2) QSAR mod-
els implementing cut-off rules were used to determine 

a reliable and conservative consensus prediction from 
two models implemented in VEGA [18] for BCF predic-
tion [19]; (3) Predictive performance of four QSAR tools 
(Derek [20, 21], Leadscope [22], MultiCASE [23] and 
Toxtree [24]) were evaluated and compared to the stand-
ard Ames assay [25] for mutagenicity prediction. Pairwise 
hybrid models were then developed using AND (accept-
ing positive results when both tools predict a positive) 
and OR combinations (accepting positive results when 
either one of the tool predicts a positive) [25–27]; (4) A 
similar AND/OR approach was implemented for the vali-
dation and construction of a hydrid QSAR model using 
MultiCASE and MDL-QSAR [28] tools for carcinogenic-
ity prediction in rodents [29]. The work was extended 
using more tools (BioEpisteme [30], Leadscope PDM, 
and Derek) to construct hybrid models using majority 
consensus predictions in addition to AND/OR combina-
tions [31].

The results of these studies demonstrate that: (1) None 
of the QSAR tools perform significantly better than oth-
ers, and they also differ in their predictive performance 
based upon the toxic endpoint and the chemical datasets 
under investigation, (2) Hybrid models have an improved 
overall predictive performance in comparison to individ-
ual QSAR tools, and (3) Consensus-positive predictions 
from more than one QSAR tool improved the identifi-
cation of true positives. The underlying idea is that each 
QSAR model brings a different perspective of the com-
plexity of the modeled biological system and combining 
them can improve the classification accuracy. However, 
consensus-positive methods are prone to introducing a 
conservative nature in discarding a potentially non-toxic 
chemical based on false positive prediction. Therefore, 
we propose an ensemble learning approach for combin-
ing predictions from multiple QSAR tools that addresses 
the drawbacks of consensus-positive predictions [32, 
33]. Hybrid QSAR models using ensemble approaches 
have been developed for various biological endpoints like 
cancer classification and prediction of ADMET proper-
ties [34–36] but not for toxic endpoints. In this study, a 
Bayesian ensemble approach is investigated for carcino-
genicity prediction, which is discussed in more details in 
the next section.

Methods
QSAR tools
Four open-source QSAR tools were used to make pre-
dictions about carcinogenicity for chemicals used in this 
study:

1. OECD ToolBox Chemicals were screened for two 
mutagenic alerts: (1) in  vitro mutagenicity alerts by 
ISS (Ames mutagenicity), and (2) in vivo mutagenic-
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ity alerts by ISS (Micronucleus assay), and two carci-
nogenic alerts: (1) carcinogenic (genotoxic and non-
genotoxic) alerts by ISS, and (2) oncology primary 
classifications) profiling alerts. A positive result in 
a profiling category for any chemical substance was 
considered a positive carcinogenicity prediction for 
the test chemical [37].

2. Danish QSAR Chemicals were screened in the data-
base for mutagenicity, mutagenicity in vivo, and car-
cinogenicity. A positive or equivalent prediction in 
any category was recorded as a positive carcinogenic-
ity prediction for the test chemical [38].

3. Lazar Chemicals were queried in the tool using the 
DSSTox carcinogenic potency DBS multicellcall end-
point and the two available mutagenic endpoints 
(DSSTox carcinogenic potency DBS mutagenicity 
and Kazius-Bursi Salmonella mutagenicity). A posi-
tive result for either category was recorded as a posi-
tive carcinogenicity prediction for the test chemical.

4. Toxtree Chemicals were queried in the Toxtree using 
the Benigni/Bossa Rulebase (for mutagenicity and 
carcinogenicity). If a potential carcinogenic alert 
based on any QSAR model or if any structural alert 
for genotoxic and non-genotoxic carcinogenicity was 
reported, then the prediction was recorded as a posi-
tive carcinogenicity prediction for the test chemical.

Datasets
Two datasets, that consist of both carcinogenic and 
non-carcinogenic chemicals, were used for training and 
testing:

1. Air toxins A set of chemicals potentially emitted in 
the industrial environment was obtained from the 
Western Australia Department of Health. The data-
set consists of 332 chemicals with a carcinogen to 
non-carcinogen ratio of 114:218.

2. Gold carcinogenic potency database (CPDB) The 
CPDB houses results from chronic, long-term ani-
mal cancer tests on a variety of chemicals [39]. The 
database was screened for all chemicals with posi-
tive or negative carcinogenic data in both male and 
female mice and/or rats. A chemical was considered 
carcinogenic if the response in either species and/
or gender had a TD50 data, else it was considered 
non-carcinogenic. The final dataset consists of 480 
chemicals with a carcinogen to non-carcinogen ratio 
of 258:222.

Selection of chemicals in each dataset was based on the 
availability of experimental in  vivo carcinogenicity data 
[obtained from the Carcinogenic Potency Database and 

Chemical Carcinogenesis Research Information System 
(CCRIS [40])] and predictions from all four QSAR tools. 
The list of chemicals in both the datasets is provided in 
Tables 1 and 2 of the Additional file 1.

Bayes ensemble model
A Bayes ensemble model is based on the concept of prior 
probabilities [41, 42]. The model uses training data for 
classification by estimating uncertain quantities using the 
Bayes theorem. Bayes theorem uses the training data as 
evidence (E) for a seen outcome (O), to construct a prob-
ability for predicting the outcome when the evidence is 
seen in the future [43]. The probability of observing the 
outcome in the past (training dataset) is termed as the 
prior probability (P(O)) and the probability of predicting 
the outcome occuring in the future is termed as the pos-
terior probability (P(O|E)). The Bayes theorem calculates 
the posterior probability using Eq. (1).

where P(O) is the probability of the outcome and P(E) is 
the probability of the evidence. In a binary classification 
problem, the final predicted class is the one with a higher 
value of P(O|E).

In this study, the training data consisted of predictions 
from four QSAR tools and true experimental class about 
the nature of the chemical (carcinogenic or non-carcino-
genic). Each tool was used to make a prediction about the 
class (ω), which is recorded as 1 or 0 representing carci-
nogenic and non-carcinogenic, respectively. Since there 
were four QSAR tools, the possible number of combina-
tions of predictions is k = 24 (= 16). Each unique pre-
diction combination is represented by the vector sk. The 
posterior probability of a chemical being carcinogenic 
(ω = 1) or non-carcinogenic (ω = 0) associated with each 
prediction combination, P(ω|s = sk) is then calculated 
using Eq. (2).

where, sk is the prediction combination for the test chemi-
cal, P(sk |ω) is the prior probability of observing a predic-
tion combination sk given that a chemical is carcinogenic 
or non-carcinogenic, P(ω) is the probability of a chemical 
being carcinogenic or non-carcinogenic and P(sk) is the 
probability of a particular prediction combination from 
the QSAR tools. So, for each prediction combination (sk ) 
there is an associated posterior probability (P(ω|s = sk) ), 
which is used to make the final classification (ω′). The 
algorithm was implemented in Matlab R2015a [44] and 
the source code is provided in the Additional file 2.

(1)P(O|E) =
P(E|O)P(O)

P(E)
,

(2)P(ω|s = sk)k =
P(sk |ω)P(ω)

P(sk)
,
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Algorithm
The approach outlined above is implemented in two steps 
for estimation of the final classification (ω′): 

Step 1.  The posterior probability of a test chemi-
cal being carcinogenic was calculated from 
Eq.  (3) and was used to construct a decision 
table as shown in Table 1 for both datasets. 

 where, 

 So, 

(3)P(ω = 1|s = sk) =
P(sk |ω = 1)P(ω = 1)

P(sk)

(4)P(sk |ω = 1) =
N(ω=1,sk )

N(ω=1)

,

(5)P(ω = 1) =
N(ω=1)

N
, and

(6)P(sk) =
Nsk

N
.

(7)P(ω = 1|s = sk) =

(

N(ω=1,sk )

N(ω=1)

)(

N(ω=1)

N

)

(

Nsk
N

)

(8)=
N(ω=1,sk )

Nsk

,

where Nsk was the number of chemicals with a predic-
tion combination sk in the training dataset, N(ω=1) was 
the total number of carcinogens in the training dataset, 
N(ω=1,sk ) was the number of carcinogens with prediction 
combination sk, N was the total number of chemicals in 
the training dataset and k ranges from 1 to 16. Tables 3 
and 4 in the Additional file 1 list the number of samples 
in each of the 16 prediction classes for both datasets.

Step 2.  For a new test chemical, the prediction com-
bination vector sk was determined and was 
used to look up the posterior probability 
P(ω = 1|s = sk) or Pk associated with it from 
the decision table. The final prediction (ω′) 
was estimated based on the value of Pk, which 
was compared to a variable cut-off as outlined 
in Fig.  1. The cut-off represents the value of 
posterior probability beyond which a new 
test chemical can be classified as carcono-
genic. The value of the cut-off can be varied 
(between 0 and 1) leading to different decision 
points for the final classification.

The Bayes ensemble model is, thus, very powerful 
in giving a user the flexibility of adjusting the cut-off to 
reach a desired level of sensitivity and specificity as dem-
onstrated in the results. The flexibility in changing the 
cut-off also makes the model endpoint independent.

Model validation
One of the major concerns with the use of QSAR tools 
for a regulatory purpose is the reliability in their predic-
tions. QSAR tools need to be assessed for their scientific 
validity so that regulatory organizations have a sound 
scientific basis for decision making. The OECD member 

Table 1 Prediction combination table with posterior prob-
ability, P(ω|s = sk), for  each combination number, sk,  
which represents a prediction combination from  each 
of the four QSAR tools

Combination 
number

Tool 1 Tool 2 Tool 3 Tool 4 Posterior 
probability

s1 0 0 0 0 P(ω|s = s1)

s2 0 0 0 1 P(ω|s = s2)

s3 0 0 1 0 P(ω|s = s3)

s4 0 0 1 1 P(ω|s = s4)

s5 0 1 0 0 P(ω|s = s5)

s6 0 1 0 1 P(ω|s = s6)

s7 0 1 1 0 P(ω|s = s7)

s8 0 1 0 1 P(ω|s = s8)

s9 0 1 1 1 P(ω|s = s9)

s10 1 0 0 0 P(ω|s = s10)

s11 1 0 0 1 P(ω|s = s11)

s12 1 0 1 0 P(ω|s = s12)

s13 1 0 1 1 P(ω|s = s13)

s14 1 1 0 0 P(ω|s = s14)

s15 1 1 0 1 P(ω|s = s15)

s16 1 1 1 1 P(ω|s = s16)

Fig. 1 Bayesian classifier ensemble for predicting carcinogenicity. 
The posterior probability, Pk, as determined from Table 1 is compared 
with a variable cut-off between 0 and 1
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countries agreed upon a set of principles as guidelines 
for scientifically validating a QSAR model. In accordance 
with these guidelines, external model validation was per-
formed and a range of model statistics were calculated 
for a comprehensive performance analysis. The leave one 
out cross validation (LOOCV) technique was used for 
external validation where N  models were developed each 
with (N − 1) chemicals as training set and 1 chemical as 
the test set. The following standard metrics were then 
calculated to assess the performance of the models: 

where TP is the number of true positives, TN is the num-
ber true negatives, FP is the number of false positives, 
and FN is the number of false negatives reported in the 
tests. Accuracy or concordance is a measure of correct-
ness of overall predictions. Sensitivity is a measure of 
correctness in prediction of positives or toxic chemicals 
and specificity is a measure of correctness in prediction 
of negatives or non-toxic chemicals. Balanced accuracy 
(BA) is the arithmetic mean of sensitivity and specificity 
and represents a trade-off between the two values. Posi-
tive predictive value (PPV) is the proportion of positives 
or toxic chemicals that are correctly predicted and nega-
tive predictive value (NPV) is the proportion of negatives 
or non-toxic chemicals that are correctly predicted. High 
sensitivity or low false negatives is especially important 
under REACH requirements. BA, PPV and NPV are cru-
cial in understanding the predictive power of the models 
based on the representation of carcinogenic and non-car-
cinogenic chemicals in the training datasets.

The OECD guidelines emphasize appropriate measures 
of goodness-of-fit, robustness and predictivity of QSAR 
models. Several reports discuss potential techniques for 
internal and external measures of model validation [45–
47]. Therefore, in addition to the standard metrics two 

(9)Accuracy =
TP + TN

TP + FN + TN + FP
,

(10)Sensitivity (SN ) =
TP

TP + FN
,

(11)Specificity (SP) =
TN

TN + FP
,

(12)Balanced Accuracy (BA) =
SP + SN

2

(13)PPV =
TP

TP + FP
, and

(14)NPV =
TN

TN + FN
,

conceptually simpler statistical parameters are also cal-
culated, which are indicative of overall concordance and 
performance of each model as compared to chance and 
each other:

1. Cohen’s Kappa (κ) The Kappa coefficient is a measure 
of pairwise inter-rater agreement or specific agree-
ment compared to a chance agreement. It is calcu-
lated as below: 

 In this study, the Kappa coefficient is used to compare 
how well the predictions from various tools agree 
with the experimental or true values. Values of κ = 0 , 
0.41 < κ < 0.60, 0.61 < κ < 0.80 and κ = 1 repre-
sent no, moderate, substantial and perfect agreement, 
respectively [48, 49].

2. Receiver Operating Characteristics (ROC) Curve 
A ROC curve is a plot of true positive rate (sensi-
tivity) and the false positive rate (1-specificity). A 
ROC curve demonstrates how the performance of a 
binary classifier changes as the threshold parameters 
are varied [50]. Area under the ROC curve can be 
used to compare the classification tools; higher area 
implies a better classification.

Results and discussion
Accuracy, sensitivity, specificity, balanced accuracy, PPV 
and NPV
Statistical performance of the ensemble model in com-
parison to the various QSAR tools is summarized in 
Tables  2 and   3. The statistics for the Bayes ensemble 
model are presented for three different cut-offs, which 
demonstrate the utility of the cut-off feature. As shown, 
the accuracy (>80  %), balanced accuracy (>78  %), PPV 
(>79 %) and NPV (>79 %) of the Bayes ensemble model is 
highly improved compared to the base classifiers (QSAR 
tools) for both the datasets. The specificity was substan-
tially improved which adheres with the REACH legisla-
tives emphasis on the reduction of false negatives.

The statistics demonstrate the inability of any particular 
QSAR tool to make consistent predictions across differ-
ent chemical datasets. In case of Bayes ensemble model, 
varying the cut-off leads to perfect sensitivity (cut-off = 
0) or perfect specificity (cut-off = 1). However, cut-off 
values of 0.4, 0.5 and 0.6 result in a balanced sensitivity 
and specificity with only a minor change in all calculated 
statistics for both the datasets. This demonstrates the 
robustness of the Bayes ensemble model. Additionally, 

(15)

κ =
(TP + TN )−

(

(TP+FN )(TP+FP)+(FP+TN )(FN+TN )
N

)

1−

(

(TP+FN )(TP+FP)+(FP+TN )(FN+TN )
N

) .
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pairwise Student’s t-tests was used to establish statisti-
cally significant differences between the predictions from 
the Bayes ensemble model (cut-off = 0.5) and all the tools 
at a 5 % significance level, for both datasets.

Cohen’s Kappa coefficient
As seen in Tables 2 and 3, the Bayes ensemble model has 
the highest Kappa coefficient. This means that the Bayes 
ensemble predictions best concur with the experimen-
tal data. Toxtree, Danish QSAR and the OECD Tool-
box demostrate less than moderate agreement with the 
experimental values for both the datasets. The Bayes 
ensemble model with cut-off = 0.4 has a κ > 0.62 for 
both the datasets. It is an indication of stronger and more 
substantial agreement with the experimental values com-
pared to the other QSAR tools.

ROC curve
Figure  2 shows the receiver operating characteris-
tics plot for all the QSAR tools and the Bayes ensem-
ble model. An ideal binary predictor would have zero 
false predictions and so the desired point on the ROC 
curve is top left corner where sensitivity is one and 
(1-specificity) is zero. The black line corresponds to 

the performance of a random classifier, which does not 
have any preferences in binary outcomes. The higher 
the area under the ROC curve, the greater is the predic-
tive ability of the model. The tools give a binary predic-
tion, therefore, they are represented as a point on the 
ROC plot. In the case of Bayes ensemble model, a curve 
can be traced for each sensitivity-specificity combina-
tion obtained after changing the value of the cut-off. In 
this study, the cut-off is varied between 0 and 1 with a 
step size of 0.1 allowing for 11 decision points for model 
validation. Hence, the ROC plot consists of data points 
corresponding to each value of cut-off, which can be 
traced to obtain a ROC curve. The ROC curve for the 
Bayes ensemble model is higher than all the other tools 
implying better quality of predictions.

The variable cut-off in the ROC curve can be adjusted 
to select a trade-off between sensitivity and specificity. 
This feature provides an additional control to the regulat-
ing agencies in grading a chemical based on the severity 
of the toxic endpoint under study. It exhibits user-control 
and flexibility in the predictive ability of the ensemble 
model.

Overall, the results show that the Bayes ensemble 
model is better and more consistent with respect to 

Table 2 Performance metrics for air toxins dataset

Model Accuracy (%) SN (%) SP (%) BA (%) PPV (%) NPV (%) Kappa (κ)

Toxtree 75.56 68.18 79.51 73.85 64.10 82.32 0.47

Lazar 75.24 74.55 75.61 75.08 62.12 84.70 0.48

Danish QSAR 74.29 80.91 70.73 75.82 59.73 87.35 0.48

OECD toolbox 76.19 69.09 80.00 74.55 64.96 82.83 0.48

Bayes ensemble 
 (Cut-off = 0.4)

83.81 70.00 91.22 80.61 81.05 85.00 0.63

Bayes ensemble
 (Cut-off = 0.5)

83.81 70.00 91.22 80.61 81.05 85.00 0.63

Bayes ensemble
 (Cut-off = 0.6)

82.22 65.45 91.22 78.34 80.00 83.11 0.59

Table 3 Performance metrics for the CPDB dataset

Model Accuracy (%) SN (%) SP (%) BA (%) PPV (%) NPV (%) Kappa (κ)

Toxtree 66.04 84.50 44.59 64.55 63.93 71.22 0.30

Lazar 80.63 86.05 74.32 80.19 79.57 82.09 0.61

Danish QSAR 65.00 91.09 34.68 62.89 61.84 77.00 0.27

OECD toolbox 64.79 84.50 41.89 63.20 62.82 69.93 0.27

Bayes ensemble
 (Cut-off = 0.4)

81.04 83.33 75.23 79.28 80.14 82.27 0.62

Bayes ensemble
 (Cut-off = 0.5)

80.21 84.50 75.23 79.87 79.85 80.68 0.60

Bayes ensemble
 (Cut-off = 0.6)

80.42 84.50 77.03 80.77 80.83 79.91 0.61
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different in silico QSAR tools. The model combines pre-
dictions from various in silico tools in a transparent and 
reproducible manner. It can also be optimized to reduce 

the number of false predictions while maintaining flex-
ibility in addressing other considerations in making these 
predictions.

Fig. 2 Receiver operator characteristics (ROC) curve of Bayes ensemble model as compared to other QSAR tools. The Bayes model at different 
thresholds is depicted by red points, at 0.5 cut-off by green point and the base QSAR tools by blue points. The ROC plot for the Bayes ensemble model 
is depicted by the red dotted line. a Air toxins dataset, b CPDB dataset
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Conclusion
The results of this study demonstrate that different QSAR 
tools vary in the quality of predictions depending on the 
underlying algorithm and training datasets. Ensemble 
machine learning presents a new approach for combining 
the predictions from multiple QSAR tools. The strength 
of an ensemble model depends on the diversity of the 
algorithm and the predictive ability of the base models. 
Each individual tool has its strengths and weaknesses 
and an ensemble model enables leveraging the benefits of 
individual tools, minimizing the impact of their algorith-
mic differences and increase in chemical space coverage.

The Bayes ensemble model presented here is consistent 
in its performance across both the datasets. The results spe-
cifically show improved (1) accuracy and balanced accuracy 
in the predictions, (2) specificity and positive predictive 
value, which are an indication of reduction in false posi-
tive predictions, and (3) Kappa coefficient, across both the 
datasets. The statistics demonstrate how ensemble machine 
learning methods can be used to increase the capability of 
consensus QSAR models for toxicity prediction.

The Bayes ensemble model offers flexibility in achiev-
ing a desired trade-off between sensitivity and specificity. 
It also demonstrares how multiple QSAR tools with dif-
ferent complexity and accuracy can be used together for 
developing more reliable predictors. The results suggest 
that ensemble modeling techniques are a good strategy 
for refining hybrid models and to tailor their use based on 
the severity and concerns associated with the toxic end-
point under study. We presented an example application 
with Toxtree, Lazar, OECD Toolbox, and Danish QSAR, 
and two different classes of chemical datasets for carci-
nogenicity prediction. This approach can be extended to 
different tools and different kinds and sizes of chemical 
datasets for different toxic endpoints as well.
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